Input a text to receive response from Alfarvis
Enter Bye to close the program
Alfa is data exploration and analysis software that uses natural language
To begin data exploration, you should first load a dataset using the "load command". For example "load tour de france dataset" to load a cycling dataset
To get a list of datasets that can be loaded, call "list files"
Once you have loaded a dataset, you can perform different sets of commands : visualization, statistics, machine learning
You can list commands using "list commands" or "list visualization/statistics... commands" for specific command list
You can also get individual help for each of the commands by calling "help [command name]"
Apart from the above commands, there are also data handling commands that can set row labels, set reference for setting legends etc
You can get a list of data handling commands by calling "list data handling commands"
______________________________________________________
User: load breast cancer data set
Alfa:
Running command in background!
Loaded breast cancer tumor
Showing Statistics for breast cancer tumor
Loaded file: breast_tumor_data.csv
______________________________________________________
User: set reference as diagnosis
Alfa:
Setting reference to diagnosis
______________________________________________________
User: what is the mean of area
Alfa:
Feature
Mean
area
654.89
Saving result to mean.area
______________________________________________________
You can also do any of the summary statistics for each label/group
User: what is the groupwise mean of area
Alfa:
area
diagnosis
462.79
1.00
978.38
2.00
______________________________________________________
Similarly, you can do a summary statistic or groupwise summary of the complete dataset or a selected set of features. See below
User: summary of breast cancer dataset
Alfa:
features
max
mean
min
stdev
area
2501.00
654.89
143.50
351.91
compactness
0.35
0.10
0.02
0.05
concave.points
0.20
0.05
0.00
0.04
concavity
0.43
0.09
0.00
0.08
diagnosis
2.00
1.37
1.00
0.48
fractal.dimension
0.10
0.06
0.05
0.01
id
911320502.00
30371831.43
8670.00
125020585.61
perimeter
188.50
91.97
43.79
24.30
radius
28.11
14.13
6.98
3.52
smoothness
0.16
0.10
0.05
0.01
symmetry
0.30
0.18
0.11
0.03
texture
39.28
19.29
9.71
4.30
______________________________________________________
User: groupwise summary of breast cancer dataset
Alfa:
1_mean
1_stdev
2_mean
2_stdev
features
pValue: 0 vs 1
462.79
134.29
978.38
367.94
area
0.00
0.08
0.03
0.15
0.05
compactness
0.00
0.03
0.02
0.09
0.03
concave.points
0.00
0.05
0.04
0.16
0.08
concavity
0.00
0.06
0.01
0.06
0.01
fractal.dimension
0.77
26543824.62
116739662.03
36818050.44
137896549.64
id
0.36
78.08
11.81
115.37
21.85
perimeter
0.00
12.15
1.78
17.46
3.20
radius
0.00
0.09
0.01
0.10
0.01
smoothness
0.00
0.17
0.02
0.19
0.03
symmetry
0.00
17.91
4.00
21.60
3.78
texture
0.00
______________________________________________________
You can use any of the visualization commands shown in the visualization section to visualize and explore different characteristics of the dataset. A few examples are shown below
User: bar plot of fractal.dimension and smoothness
Alfa:

Saving result to figure.1.bar
______________________________________________________
User: violin plot of symmetry and concavity
Alfa:

Saving result to figure.2.violin
______________________________________________________
User: scatter between perimeter and radius
Alfa:

Saving result to figure.3.scatter2d
______________________________________________________
User: multiscatter between compactness concave.points and texture
Alfa:

Saving result to figure.4.multiscatter
______________________________________________________
User: correlation between symmetry smoothness radius perimeter texture
Alfa:
Displaying the result as a heatmap

Saving result to figure.5.correlation
______________________________________________________
User: ttest of breast cancer dataset
Alfa:
features
pValue: 0 vs 1
area
0.00
compactness
0.00
concave.points
0.00
concavity
0.00
fractal.dimension
0.77
id
0.36
perimeter
0.00
radius
0.00
smoothness
0.00
symmetry
0.00
texture
0.00
______________________________________________________
User: roc analysis of breast cancer dataset
Alfa:
AUC
features
0.94
area
0.86
compactness
0.96
concave.points
0.94
concavity
0.52
fractal.dimension
0.55
id
0.95
perimeter
0.94
radius
0.72
smoothness
0.70
symmetry
0.78
texture
______________________________________________________
User: save notebook
Alfa: